Elcometer 2300

Viscosimètre Rotatif

Instructions d’utilisation

Il s'agit d'un produit de Classe B, Groupe 1 ISM conformément au CISPR 11.

Produit de Groupe 1 ISM : produit dans lequel on génère et/ou utilise intentionnellement l'énergie radioélectrique nécessaire au fonctionnement interne de l'équipement lui-même.

Les produits de Classe B peuvent être utilisés dans tous les établissements domestiques et ceux directement reliés à un réseau basse tension qui alimente des bâtiments à usage domestique.

eicometer® est une marque commerciale déposée de Elcometer Limited. Toutes les autres marques commerciales appartiennent à leurs propriétaires respectifs.

© Copyright Elcometer Limited. 2008-2013
Tous droits réservés. Aucune partie du présent document ne peut être reproduite, transmise, transcrite, stockée (dans un système de recherche et récupération ou autre) ou traduite dans une langue quelconque, sous quelle forme ou par quelque moyen (électronique, mécanique, magnétique, optique, manuel ou autre) que ce soit, sans l'autorisation écrite préalable d’Elcometer Limited.

Une copie de ce manuel d’instruction est disponible en téléchargement sur notre site Internet: www.elcometer.com.

Doc. n° TMA-0377-01 Édition 03 (Based on TMA-0377 Issue 05) 
Texte avec couverture n° : 19708-01
<table>
<thead>
<tr>
<th>Chapitre</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1    A propos de votre viscosimètre</td>
<td>2</td>
</tr>
<tr>
<td>2    Débuter avec votre viscosimètre</td>
<td>5</td>
</tr>
<tr>
<td>2.1  Composantes de l’instrument</td>
<td>5</td>
</tr>
<tr>
<td>2.2  Assembler le viscosimètre</td>
<td>6</td>
</tr>
<tr>
<td>2.3  Branchements</td>
<td>7</td>
</tr>
<tr>
<td>2.4  Clavier de contrôle</td>
<td>7</td>
</tr>
<tr>
<td>2.5  Configurer votre viscosimètre</td>
<td>8</td>
</tr>
<tr>
<td>2.6  Installer l’extérieur du spindle</td>
<td>9</td>
</tr>
<tr>
<td>2.7  Spindle types</td>
<td>10</td>
</tr>
<tr>
<td>2.8  Installation du spindle</td>
<td>11</td>
</tr>
<tr>
<td>2.9  Attention</td>
<td>11</td>
</tr>
<tr>
<td>3    Utilisation de votre viscosimètre</td>
<td>12</td>
</tr>
<tr>
<td>3.1  Avant de débuter</td>
<td>12</td>
</tr>
<tr>
<td>3.2  Configurer le type de spindle et la vitesse de rotation</td>
<td>12</td>
</tr>
<tr>
<td>3.3  Commencer les mesures</td>
<td>13</td>
</tr>
<tr>
<td>3.4  Problèmes lors de la mesure de viscosité</td>
<td>13</td>
</tr>
<tr>
<td>3.5  Après utilisation</td>
<td>14</td>
</tr>
<tr>
<td>4    Imprimer les résultats de test</td>
<td>14</td>
</tr>
<tr>
<td>5    Utiliser les accessoires optionnels</td>
<td>15</td>
</tr>
<tr>
<td>5.1  Adaptateur pour échantillons de faible viscosité</td>
<td>16</td>
</tr>
<tr>
<td>5.2  Adaptateur hélicoïdal</td>
<td>17</td>
</tr>
<tr>
<td>6    Tables de selection due spindle</td>
<td>19</td>
</tr>
<tr>
<td>6.1  Spindle L et TL (à utiliser avec les viscosimètres RV1-L / RV2-L)</td>
<td>19</td>
</tr>
<tr>
<td>6.2  Spindles R et TR (à utiliser avec viscosimètres RV1-R / RV2-R)</td>
<td>21</td>
</tr>
<tr>
<td>6.3  LCP Spindle</td>
<td>23</td>
</tr>
<tr>
<td>6.4  Spindles P</td>
<td>24</td>
</tr>
<tr>
<td>7    Calibrage</td>
<td>25</td>
</tr>
<tr>
<td>8    Maintenance</td>
<td>25</td>
</tr>
<tr>
<td>9    Dépannage</td>
<td>26</td>
</tr>
<tr>
<td>10   Caracteristiques techniques</td>
<td>27</td>
</tr>
<tr>
<td>11   Pieces detachees et accessoires</td>
<td>28</td>
</tr>
<tr>
<td>12   Produits associes</td>
<td>29</td>
</tr>
</tbody>
</table>
SECTION A : VISCOSIMÈTRE

L’achat du viscosimètre rotatif Elcometer vous ouvre le réseau Elcometer au niveau mondial et son support technique. Pour plus d’informations, visitez notre site Internet sur www.elcometer.fr

1 A PROPOS DE VOTRE VISCOSIMETRE

Le Viscosimètre Rotatif Elcometer mesure la viscosité de liquides en accord avec les spécifications de la norme ISO 2555 et bien d’autres normes ASTM.
Un mobile équipé d’un disque ou un cylindre est mis en rotation dans l’échantillon à tester. Un ressort relie le mobile au moteur qui tourne à vitesse constante. L’angle de déviation entre le mobile et l’arbre du moteur est mesuré électroniquement et converti en couple de torsion. Le couple de torsion mesuré est fonction de :
• la vitesse de rotation du mobile (spindle)
• la géométrie du mobile (taille du disque ou du cylindre)
• la viscosité de l’échantillon testé
En tenant compte de ces éléments, le viscosimètre rotatif calcule la viscosité et l’affiche directement en unités SI ou CGS.
Le viscosimètre est livré avec une gamme de mobiles; la combinaison du mobile approprié et de la vitesse de rotation permet de prendre des mesures sur une large plage de viscosité.
Des accessoires optionnels donnent la possibilité de mesurer :
• Des échantillons de faible viscosité - à des températures jusqu’à 100°C (212°F)
• Des échantillons de faible viscosité - à des températures jusqu’à 200°C (392°F)
• Des échantillons de petit volume (faible quantité)
• Des échantillons complexes tels que crèmes, gels, cires, pâtes, etc...
Voir “Pièces détachées et accessoires” pagina 28 pour plus de détails sur ces accessoires.

1.1 Note sur ce mode d’emploi

Cette notice décrit le mode d’emploi des Viscosimètres Rotatifs Elcometer suivants :
• Elcometer 2300 RV1-L (basse à moyenne viscosité)
• Elcometer 2300 RV1-R (moyenne à haute viscosité)
• Elcometer 2300 RV2-L (basse à moyenne viscosité assistée par ordinateur)
• Elcometer 2300 RV2-R (moyenne à haute viscosité assistée par ordinateur)
1.2 Contenu de la valise

- Viscosimètre
- Colonne de fixation pour viscosimètre
- Mobiles L1 à L4 ou R2 à R7 (R2 à R7 illustrés ci-dessus)
- Base en V
- Petits outils
- Clé anglaise
- Protection pour mobile
- Câble d’alimentation
- Rack de stockage
- Sonde de température PT100
- Câble de connexion RS 232
- Logiciel ViscosityMaster
- Certificat de calibration
- Mode d’emploi
- Valise de transport
1.3 Normes
Votre viscosimètre peut être utilisé conformément aux normes Nationales et Internationales suivantes :
• BS 3900 A7-2
• ISO 2884-2
• ASTM D2196

1.4 Caractéristiques de votre viscosimètre
• 19 vitesses de 0,3 tr/mn à 200 tr/mn
• Sonde de température PT100
• Interface RS 232 (bidirectionnelle sur les modèles RV2)
• Logiciel de téléchargement
• Contrôle par PC (modèles RV2 uniquement)
• Signal sonore en cas de dépassement de la gamme de viscosité
• Écran 4 lignes indiquant :
  • Viscosité (cP ou mPa•s)
  • Vitesse de rotation du spindle
  • % échelle (Brookfield)
  • Température de l’échantillon
  • Auto range
  • Taux de cisaillement (modèles RV2 uniquement)
  • Contrainte de cisaillement (modèles RV2 uniquement)

Votre Viscosimètre Rotatif Elcometer est livré dans un emballage composé de carton et de mousse. Merci de vous assurer que cet emballage sera éliminé en tenant compte du respect de l’environnement. Contactez la déchetterie la plus proche pour plus d’informations.

Pour optimiser l'utilisation de votre Viscosimètre Rotatif Elcometer, prenez le temps de lire les présentes instructions. N'hésitez pas à contacter Elcometer ou votre distributeur local pour toute question complémentaire.
2 DEBUTER AVEC VOTRE VISCOSIMETRE

Cette section s'adresse aux opérateurs qui utilisent le Viscosimètre Rotatif Elcometer pour la première fois. Elle contient des informations sur les composantes de l'instrument et des conseils d'utilisation. Après lecture de cette section, vous serez prêts à utiliser votre appareil.

2.1 Composantes de l'instrument

![Diagramme des composantes du Viscosimètre Elcometer](image_url)
2.2 Assembler le viscosimètre
Pour assembler votre viscosimètre :

1. Retirer l’écrou situé à la base de la colonne.

2. Insérer la colonne dans la base en V comme indiqué ci-contre.

3. Refixer l’écrou au bas de la colonne à l’aide de la petite boîte à outils livrée avec votre viscosimètre.


5. Insérer la tête du viscosimètre sur la colonne.

6. Tourner le dispositif de serrage pour fixer la tête du viscosimètre en position.

7. Ajuster le niveau du viscosimètre à l’aide des pieds réglables situés sous la base en V en vous aidant du niveau à bulle situé sur le dessus de l’instrument.

8. Retirer le capuchon de protection situé au bas de l’instrument ; tirer le bouchon verticalement dans un premier temps, puis dégagez le sur le côté.

*Ne jetez pas le capuchon de protection. Remettez-le en place lorsque l’instrument est inutilisé.*

2.3 Branchements

2.4 Clavier de contrôle
Votre viscosimètre est commandé via le clavier cinq touches situé sur la face avant de l’appareil.

a. Les viscosimètres RV2 peuvent être connectés à un PC et contrôlés à distance via le logiciel ViscosityMaster - voir les instructions livrées avec le logiciel.
2.5 Configurer votre viscosimètre

Allumer le viscosimètre à l’aide du bouton marche/arrêt situé au dos du viscosimètre. Un message d’accueil s’affiche pendant quelques secondes. Ce message varie en fonction du modèle, de la version de logiciel et de la langue :

V2-R v4.3
English

Lorsque le message est affiché, appuyer sur [START] puis sur [ENTER]. L’écran de sélection langage apparaît :

Select Language
English


L’écran de sélection des unités de viscosité s’affiche :

Viscosity Units
SI (mPas)

A l’aide des touches [UP] ou [DOWN], sélectionner l’unité choisie, SI (mPas) ou CGS (cP). Appuyer sur [ENTER] pour confirmer votre choix.

Modèle RV2 uniquement : l’écran unités shear stress (contrainte de cisaillement) s’affiche :

Shear Stress Units
SI (N/m2)

A l’aide des touches [UP] ou [DOWN], sélectionner l’unité shear stress (S.S.), SI (N/m²) ou CGS (dyne/cm²). Appuyer sur [ENTER] pour confirmer votre sélection.
L’écran de sélection **unités de température** de sélection apparaît :

![Temperature Units](Celsius)


L’écran **sélection du mode** apparaît :

![Computer mode]

Sélectionner PC (Computer) ou Imprimante (Printer) à l’aide des touches [UP] ou [DOWN], puis valider votre choix par [ENTER].

L’écran **réglage horloge** apparaît :

![Set Clock]

Le jour de la semaine clignote.
Les premiers chiffres de l’heure clignotent.
Utiliser les touches [UP] ou [DOWN] pour modifier si nécessaire, puis [ENTER] pour valider
Continuer ainsi jusqu’à ce que le réglage soit terminé.
L’écran de présentation s’affiche quelques secondes puis fait place à l’écran mesure.
Si le mode a été modifié (d’imprimante à PC ou vice versa), éteindre le viscosimètre puis le remettre en marche.

**2.6 Installer l’étrier du spindle**

L’étrier livré avec votre viscosimètre a deux fonctions :
- Il protège les spindles de type L et R.
- Il permet une mesure précise avec les spindles plus larges (L1 et R1, R2, R3).
L’utilisation de l’étrier avec des spindles autres n’est pas obligatoire.
Pour installer l’étrier, le fixer au viscosimètre à l’aide de la vis.
## 2.7 Spindle types

<table>
<thead>
<tr>
<th>Type de Spindle</th>
<th>À utiliser avec</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>L (Livré avec le viscosimètre)</td>
<td>Elcometer 2300 RV1-L Elcometer 2300 RV2-L</td>
<td>Fluides basse à moyenne viscosité</td>
</tr>
<tr>
<td>R (Livré avec le viscosimètre)</td>
<td>Elcometer 2300 RV1-R Elcometer 2300 RV2-R</td>
<td>Fluides moyenne à haute viscosité</td>
</tr>
<tr>
<td>TL (accessoire optionnel)</td>
<td>Elcometer 2300 RV1-L Elcometer 2300 RV2-L</td>
<td>Kit adaptation échantillon faible volume Faible quantité de produit</td>
</tr>
<tr>
<td>TR (accessoire optionnel)</td>
<td>Elcometer 2300 RV1-R Elcometer 2300 RV2-R</td>
<td>Kit adaptation échantillon faible volume Faible volume de fluide</td>
</tr>
<tr>
<td>LCP (accessoire optionnel)</td>
<td>Elcometer 2300 RV1-L Elcometer 2300 RV1-R Elcometer 2300 RV2-L Elcometer 2300 RV2-R</td>
<td>Kit adaptation échantillon faible viscosité Fluido us basse viscosité</td>
</tr>
</tbody>
</table>

Voir “Tables de selection due spindle” pagina 19 pour plus d’informations
2.8 Installation du spindle

**Note:** Cette opération doit être faite avec beaucoup de soin pour éviter de plier le spindle ou d’endommager le moteur ou les composants internes.

1. Consulter "Tables de selection due spindle" pagina 19 pour choisir le spindle approprié ; le numéro du spindle est gravé sur le pas de vis du spindle.
2. S’assurer de la propreté des pas de vis, des éléments en contact avec le spindle et du couple moteur.
3. Si le spindle utilisé est circulaire, il doit être immergé avec précaution pour éviter la formation de bulles sous sa surface.
4. Maintenir la tige moteur d’une main, la soulever lentement puis visser doucement le spindle sur la tige. Attention : le pas de la vis est à gauche.
5. Régler la hauteur du viscosimètre jusqu’à ce que la marque située sur le spindle soit immergée. Attention de ne pas heurter le spindle avec le pot de produit car cela pourrait endommager la tige moteur.

2.9 Attention

Le Viscosimètre Rotatif Elcometer a été conçu pour préserver votre sécurité. Cependant, une mauvaise utilisation pourrait provoquer des dégâts sur l’instrument lui-même.

Merci de respecter les consignes mentionnées dans le présent manuel.

- Pour limiter le risque de décharge électrique, n’ouvrez pas le boîtier du viscosimètre. Il n’y a aucune pièce remplaçable par l’utilisateur à l’intérieur.
- Pour éviter tout risque de court circuit ou d’incendie, n’exposez pas l’appareil à la pluie ou à une humidité excessive.
- L’alimentation électrique de votre viscosimètre peut comporter un fusible. Si vous le remplacez, assurez-vous d’en utiliser un similaire.
3 UTILISATION DE VOTRE VISCOSIMÈTRE

Ce chapitre explique comment prendre des mesures avec votre viscosimètre. Il s’applique aux viscosimètres RV1 et viscosimètres RV2 en mode manuel. Pour plus d’informations sur l’utilisation des viscosimètres RV2 connectés à un PC, voir «ViscosityMaster Software» page 30.

3.1 Avant de débuter
1. Fixer l’étrier du spindle (si nécessaire) - Zie "Installer l’étrier du spindle" pagina 9.
2. Fixer le spindle - Zie "Installation du spindle" pagina 11.
3. Descendre le spindle dans le produit à tester.
4. Brancher la sonde de température dans le connecteur situé au dos du viscosimètre et placer la sonde dans l’échantillon de produit.

3.2 Configurer le type de spindle et la vitesse de rotation
1. Allumer l’instrument à l’aide de l’interrupteur situé au dos de l’instrument. Un message d’accueil s’affiche à l’écran pendant quelques secondes. Le contenu de ce message dépend du modèle de viscosimètre, de la version de logiciel et de la langue sélectionnée :

```
V2-R v4.3
English
```

Après quelques secondes, l’écran mesure apparait ; il affiche le dernier type de spindle utilisé et la dernière vitesse sélectionnée (ces paramètres ont été mémorisés par l’instrument à la dernière utilisation).

```
rpm 60     RS
mPas
temp 20.5°C
range 10000 mPas
```


La mention ‘range’ (plage) indique la valeur de viscosité maximale qu’il est possible de mesurer avec la combinaison spindle/vitesse choisie.

Le message ‘press start’ (appuyer sur Start) sur la quatrième ligne de l’écran clignote, signalant que le viscosimètre est prêt à prendre des mesures.

```
rpm 60     RS
mPas
temp 20.5°C
Press start
```
3.3 Commencer les mesures

1. Appuyer sur [START] pour lancer la mesure.
   On obtient rapidement une stabilité de la mesure. Les valeurs de viscosité affichées à l’écran peuvent être considérées comme correctes après quelques secondes (en fonction de la vitesse sélectionnée et de la viscosité de l’échantillon).
   Si la viscosité excède la plage de mesure optimale (<10% et >90% de la pleine échelle sélectionnée), l’instrument émet un bip d’avertissement.
   Si le message ‘ERROR’ apparaît à l’écran, cela signifie que la valeur de viscosité maximale a été dépassée. Dans ce cas, il faut réduire la vitesse ou choisir un spindle avec une plage plus grande.

2. Lorsque vous avez atteint une mesure stable, appuyer sur [STOP] pour arrêter le moteur. Le moteur s’arrête doucement jusqu’à atteindre une vitesse nulle de 0 tr/min ; cela protège les pièces délicates de l’instrument.
   La dernière valeur de viscosité reste affichée à l’écran.

   Si vous appuyez à nouveau sur [START], le viscosimètre redémarre à la vitesse précédemment sélectionnée.

   Si vous utilisez un viscosimètre modèle RV2 :

   Les informations affichées par un viscosimètre RV2 sont les mêmes que celles affichées par un RV1, sauf si vous utilisez des accessoires optionnels.
   Si vous utilisez un «Adaptateur faible volume de produit» ou un «Adaptateur faible viscosité», les deux dernières lignes indiqueront le Shear Rate (S.R. = taux de cisaillement) et le Shear Stress (S.S. = contrainte de cisaillement).

   Changer la vitesse de rotation et le type de spindle

   Pour modifier la vitesse de rotation et le type de spindle pendant que le moteur tourne, appuyer sur [ENTER] pour revenir sur l’écran données.

3.4 Problèmes lors de la mesure de viscosité

Des valeurs instables peuvent être dues à des changements de température de l’échantillon ou au comportement du produit en lui même.
Si les valeurs obtenues sont instables, il faut contrôler la température de l’échantillon et la stabiliser.
Si les mesures sont toujours instables après contrôle de la température, cela est dû à une interaction entre le produit testé et le mouvement du spindle.
Dans ce cas, le produit est dit «Non Newtonien» et son comportement peut être qualifié de thixotrope, rheopexique, dilatant, pseudoplastique, etc. Pour tester ce type de produit, il faut toujours utiliser les mêmes paramètres (spindle, vitesse et température) et noter des paramètres complémentaires tels que le temps écoulé avant la première mesure, l’intervalle de mesure, etc.

3.5 Après utilisation
Nettoyer l’instrument et le spindle.

⚠ Toujours retirer le spindle de l’instrument avant nettoyage. Le spindle ou l’arbre du moteur risquent d’être endommagés si vous essayez de nettoyer le spindle alors qu’il est connecté à l’instrument.

❌ Ne pas utiliser de solvants agressifs, de brosse ou d’objet métallique. Ne pas forcer sur les parties fragiles ou fines pour ne pas risquer de les tordre.

✅ Nettoyer les spindles et les autres composants à l’aide d’un solvant approprié.

Après nettoyage, et avant de ranger l’instrument, assurez-vous que tous les résidus de produit ont été enlevés et que l’instrument est bien sec.

4 IMPRIMER LES RESULTATS DE TEST
Il existe deux méthodes pour imprimer les résultats de vos essais :

• Logiciel ViscosityMaster
• Mode Impression (Printing Mode)


Le mode impression (Printing Mode) permet une impression rapide et simple de vos valeurs. Connecter le viscosimètre à une imprimante appropriée, appuyer sur START et les résultats s’impriment.

Pour utiliser le Mode impression (Printing Mode):
2. Connecter votre viscosimètre à l’aide d’un câble null-modem® (câble croisé).
3. Dès qu’on appuie sur START, les résultats sont envoyés à l’imprimante. Lorsque le Printing Mode est en position OFF, éteindre l’imprimante - faute de quoi les résultats continueront à s’imprimer.

b. Connexion pin du Null-modem: (câble croisé)

<table>
<thead>
<tr>
<th>9 pin connector (male)</th>
<th>25 pin connector (male)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin 7</td>
<td>Pin 5</td>
</tr>
<tr>
<td>Pin 2</td>
<td>Pin 3</td>
</tr>
<tr>
<td>Pin 3</td>
<td>Pin 2</td>
</tr>
</tbody>
</table>
5 UTILISER LES ACCESSOIRES OPTIONNELS

Il existe une gamme d’accessoires destinés à étendre les capacités de votre viscosimètre. Pour connaitre les codes article et commander, Zie “Pieces detachees et accessoiries” pagina 28.

Adaptateur pour échantillons de faible volume

Ce adaptateur permet de mesurer précisément la viscosité des échantillons de faible volume (8 ml à 13 ml). Il est compatible avec tous les modèles de viscosimètre rotatif Elcometer.

Il existe deux versions de cet adaptateur :
• avec capteur de température intégré
• sans capteur de température intégré

Les instructions ci-dessous décrivent l’utilisation de la version sans capteur de température intégré, mais elles s’appliquent également au modèle avec capteur de température, ce dernier ayant une conception très similaire.

L’adaptateur est composé d’une double paroi thermostatisable, d’une chambre pour l’échantillon et d’un dispositif de montage. Il faut utiliser des spindles spéciaux type TL ou TR avec cet adaptateur.

On fait circuler de l’eau chauffée par un bain thermostaté externe dans la double paroi pour maintenir l’échantillon à une température précise fixée entre -10°C et 100°C (14°F à 212°F).

Voir aussi “Adaptateur faible volume” pagina 28.

Plage de viscosité
Version L: 3 mPa•s à 200 000 mPa•s
Version R: 40 mPa•s à 3 300 000 mPa•s

Utilisation de l’adaptateur
1. Fixer le spindle approprié sur le couple moteur à l’aide du dispositif de fixation et du crochet de montage.
2. Fixer l’une des extrémités du dispositif de montage sur la double paroi comme indiqué sur le schéma ci-dessus ; repérer l’emplacement exact des trous qui permettent au dispositif de montage d’être fixé correctement.
3. Insérer délicatement le réservoir à double paroi sur le spindle et fixer l’autre extrémité de la chambre sur la tête du viscosimètre.
4. Positionner le couvercle sur le bas de la chambre en acier inox.
5. Remplir la chambre avec le volume approprié de produit à tester ; 8 ml à 13 ml (0.27 oz à 0.44 oz) - selon le spindle utilisé.
6. Glisser la chambre par le haut dans la double paroi et visser pour la maintenir en position.
7. Glisser le couvercle supérieur le long du spindle et le faire descendre sur le dessus de la chambre.
8. Connecter le bain thermostaté externe sur la double paroi (arrivée et évacuation) ; le laisser fonctionner suffisamment longtemps pour permettre à l'échantillon de se stabiliser en température.

L’adaptateur pour échantillons de faible volume est désormais prêt à l’emploi.

5.1 Adaptateur pour échantillons de faible viscosité

Cet adaptateur permet de mesurer précisément la viscosité de produits de très faible viscosité (16 ml à 18 ml), qu’ils soient Newtoniens ou non Newtoniens. Il est compatible avec tous les modèles de Viscosimètre Rotatif Elcometer.

Il existe deux versions de cet adaptateur :
• avec double paroi thermostatisable - pour chauffage externe jusqu’à 100°C (212°F)
• sans double paroi thermostatisable - pour chauffage de l’échantillon jusqu’à 200°C (392°F)

Les instructions suivantes décrivent l’utilisation de la version avec double paroi thermostatisable, mais elles s’appliquent également à la version sans double paroi thermostatisable qui est de conception similaire.

L’adaptateur est composé d’une double paroi thermostatisable, d’une chambre pour l’échantillon, d’un dispositif de montage, d’une rallonge pour la colonne et d’un spindle cylindrique spécial (LCP).

On fait circuler de l’eau chauffée par un bain thermostaté externe dans la double paroi pour maintenir l’échantillon à une température précise fixée entre -10°C et 100°C (14°F à 212°F).

Pour commander, voir “Adaptateur pour échantillons de faible viscosité” pagina 16 et “Adaptateur faible viscosité-sans chambre double paroi” pagina 28

Plage de viscosité
Version L: de 0.5 mPa•s à 2000 mPa•s
Version R: de 4.8 mPa•s à 21 333 mPa•s

Comment utiliser l’adaptateur
3. Monter une extrémité de la plaque de montage sur la double paroi thermostatisable, comme indiqué sur le dessin; faire attention à la goupille de positionnement qui permet de monter correctement la plaque.
5. Monter le capuchon en bas de la chambre, en inox, de l’échantillon.
6. Remplir la chambre de l'échantillon avec un volume convenable du fluide à tester; 16 ml à 18 ml (0.54 oz à 0.61 oz).
7. Glisser la chambre de l'échantillon, par le haut de la double paroi thermostatisable. La tourner pour la verrouiller en position.
8. Monter le capotage autour du crochet de fixation et le faire descendre sur le dessus de la chambre de l'échantillon.
9. Brancher le circuit de chauffage extérieur sur les entrée et sortie de la double paroi thermostatisable et laisser fonctionner assez longtemps pour que la température de l'échantillon se stabilise.

L'adaptateur pour basse viscosité est maintenant prêt à l'emploi.

5.2 Adaptateur hélicoïdal

L'adaptateur hélicoïdal permet d’effectuer des mesures de viscosité précises sur des échantillons de crème, de gel, de cire, de pâte, de mastic, de gélatine, etc. Cet adaptateur se monte sur tous les viscosimètres rotatifs Elcometer.

L’adaptateur permet le déplacement de la tête du viscosimètre, de haut en bas. Ce mouvement permet au spindle de décrire une hélice dans l’échantillon, évitant la formation de bulles qui rendraient sinon la mesure impossible.

L’adaptateur se compose :
• d’un mécanisme d’entraînement avec une plaque de fixation et un câble électrique.
• d’un porte-spindle et d’un poids
• d’une entretoise cylindrique
• d’une bague d’arrêt, x 2
• d’un jeu de spindles P

Double paroi, chambre d’échantillon, plaque de montage, rallonge de colonne et spindle cylindrique spécial (LCP).

Cet adaptateur se monte sur les spindles spéciaux de type T - PA, PB, PC, PD, PE, PF

Voir également ‘Adaptateur hélicoïdal’ page 29’

Plage de viscosité
Version L: de 156 mPa•s à 3 120 000 mPa•s
Version R: de 1660 mPa•s à 33 300 000 mPa•s

Comment utiliser l’adaptateur
1. Démonter la plaque standard de fixation de la tête de la colonne.
2. Glisser l’entretoise cylindrique (A) sur la colonne jusqu’à ce qu’elle vienne en butée.
3. Appuyer puis remonter le levier (C) du mécanisme d’entraînement et glisser ce mécanisme (D) sur la colonne. Relâcher le levier (C) pour embrayer le mécanisme sur la colonne.
5. Glisser la seconde bague d’arrêt sur la colonne.
6. Faire passer la tige de tête du viscosimètre dans le trou de la plaque de fixation, sur le mécanisme d’entraînement et faire pivoter le levier de la plaque pour verrouiller la tête du viscosimètre en position.
7. Visser le poids sur le système de verrouillage du spindle.
8. Choisir le bon spindle (Zie “Spindles P” pagina 24.) et le placer sur le porte-spindle. Tourner la bride pour verrouiller le spindle.
10. Régler les deux bagues d’arrêt pour permettre le débattement vertical souhaité et les bloquer.
L’adaptateur hélicoïdal est maintenant prêt à l’emploi. Le brancher et l’allumer avec le bouton on/off.
6 TABLES DE SELECTION DUE SPINDLE

6.1 Spindle L et TL (à utiliser avec les viscosimètres RV1-L / RV2-L).

Table 1: Spindle type L³

<table>
<thead>
<tr>
<th>Vitesse spindle (tr/ min)</th>
<th>Viscosité Maximale⁵ mesurable (mPa•s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L₁⁶</td>
</tr>
<tr>
<td>0.3</td>
<td>20 000</td>
</tr>
<tr>
<td>0.5</td>
<td>12 000</td>
</tr>
<tr>
<td>0.6</td>
<td>10 000</td>
</tr>
<tr>
<td>1</td>
<td>6000</td>
</tr>
<tr>
<td>1.5</td>
<td>4000</td>
</tr>
<tr>
<td>2</td>
<td>3000</td>
</tr>
<tr>
<td>2.5</td>
<td>2400</td>
</tr>
<tr>
<td>3</td>
<td>2000</td>
</tr>
<tr>
<td>4</td>
<td>1500</td>
</tr>
<tr>
<td>5</td>
<td>1200</td>
</tr>
<tr>
<td>6</td>
<td>1000</td>
</tr>
<tr>
<td>10</td>
<td>600</td>
</tr>
<tr>
<td>12</td>
<td>500</td>
</tr>
<tr>
<td>20</td>
<td>300</td>
</tr>
<tr>
<td>30</td>
<td>200</td>
</tr>
<tr>
<td>50</td>
<td>120</td>
</tr>
<tr>
<td>60</td>
<td>100</td>
</tr>
<tr>
<td>100</td>
<td>60</td>
</tr>
<tr>
<td>200</td>
<td>30</td>
</tr>
<tr>
<td>Résolution</td>
<td>1 mPa•s</td>
</tr>
</tbody>
</table>

a. Les spindles L sont livrés de série avec les viscosimètres RV1-L/RV2-L.

b. La valeur minimale recommandée doit atteindre 15% de l’échelle.

Table 2: Spindle type TL

<table>
<thead>
<tr>
<th>Vitesse Spindle (tr/min)</th>
<th>Viscosité maximale(^b) mesurable (mPa•s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TL5(^c)</td>
</tr>
<tr>
<td>0.3</td>
<td>10 000</td>
</tr>
<tr>
<td>0.5</td>
<td>6000</td>
</tr>
<tr>
<td>0.6</td>
<td>5000</td>
</tr>
<tr>
<td>1</td>
<td>3000</td>
</tr>
<tr>
<td>1.5</td>
<td>2000</td>
</tr>
<tr>
<td>2</td>
<td>1500</td>
</tr>
<tr>
<td>2.5</td>
<td>1200</td>
</tr>
<tr>
<td>3</td>
<td>1000</td>
</tr>
<tr>
<td>4</td>
<td>750</td>
</tr>
<tr>
<td>5</td>
<td>600</td>
</tr>
<tr>
<td>6</td>
<td>500</td>
</tr>
<tr>
<td>10</td>
<td>300</td>
</tr>
<tr>
<td>12</td>
<td>250</td>
</tr>
<tr>
<td>20</td>
<td>150</td>
</tr>
<tr>
<td>30</td>
<td>100</td>
</tr>
<tr>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>60</td>
<td>50</td>
</tr>
<tr>
<td>100</td>
<td>30</td>
</tr>
<tr>
<td>200</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td><strong>Résolution</strong></td>
</tr>
</tbody>
</table>

\(^a\) Les spindles de type TL sont les spindles optionnels à utiliser avec l’Adaptateur pour échantillons de faible volume ; Zie “Pieces detachees et accessoiries” pagina 28.

\(^b\) La valeur minimale recommandée doit atteindre 15% de l’échelle.

\(^c\) Taux de cisaillement TL5 : 1.32 x tr/mn avec un volume d’échantillon de 8.0 cm\(^3\)

\(^d\) Taux de cisaillement TL6 : 0.34 x tr/mn avec un volume d’échantillon de 10.0 cm\(^3\)

\(^e\) Taux de cisaillement TL7 : 0.28 x tr/mn avec un volume d’échantillon de 9.5 cm\(^3\)
6.2 Spindles R et TR (à utiliser avec viscosimètres RV1-R / RV2-R)

Table 3: Spindle type R

<table>
<thead>
<tr>
<th>Spindle type</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>R6</th>
<th>R7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitesse spindle (tr/min)</td>
<td>0.3</td>
<td>0.5</td>
<td>0.6</td>
<td>1</td>
<td>1.5</td>
<td>2</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>33 300</td>
<td>20 000</td>
<td>16 600</td>
<td>10 000</td>
<td>6600</td>
<td>5000</td>
<td>4000</td>
</tr>
<tr>
<td>Résolution</td>
<td>1 mPa•s</td>
<td>1 mPa•s</td>
<td>10 mPa•s</td>
<td>10 mPa•s</td>
<td>10 mPa•s</td>
<td>10 mPa•s</td>
<td>10 mPa•s</td>
</tr>
</tbody>
</table>

a. Les spindles de type R sont livrés en standard avec les viscosimètres RV1-R/RV2-R.

b. La valeur minimale recommandée doit atteindre 15% de l'échelle.

c. Le spindle R1 est utilisé pour les échantillons de viscosité faible. Il faut utiliser le spindle avec se protection pour obtenir une bonne de la viscosité. Du fait que les modèles RV1-R et RV2-R sont normalement utilisés pour les plages de viscosité moyennes, le spindle R1 ne s'utilise pas souvent. Il ne fait donc pas partie de l’équipement standard du viscosimètre. On peut cependant se le procurer, sur demande, Zie “Pieces detachees et accessoires” pagina 28..
Le taux de cisaillement (S.R.) a été calculé sur la base de produits newtoniens.

Table 4: Spindle type TR

<table>
<thead>
<tr>
<th>Vitesse spindle (tr/min)</th>
<th>TR8</th>
<th>TR9</th>
<th>TR10</th>
<th>TR11</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>166 600</td>
<td>833 300</td>
<td>1 600 000</td>
<td>3 300 000</td>
</tr>
<tr>
<td>0.5</td>
<td>100 000</td>
<td>500 000</td>
<td>1 000 000</td>
<td>2 000 000</td>
</tr>
<tr>
<td>0.6</td>
<td>83 300</td>
<td>416 600</td>
<td>833 300</td>
<td>1 600 000</td>
</tr>
<tr>
<td>1</td>
<td>50 000</td>
<td>250 000</td>
<td>500 000</td>
<td>100 000</td>
</tr>
<tr>
<td>1.5</td>
<td>33 300</td>
<td>166 600</td>
<td>333 300</td>
<td>666 600</td>
</tr>
<tr>
<td>2</td>
<td>25 000</td>
<td>125 000</td>
<td>250 000</td>
<td>500 000</td>
</tr>
<tr>
<td>2.5</td>
<td>20 000</td>
<td>100 000</td>
<td>200 000</td>
<td>400 000</td>
</tr>
<tr>
<td>3</td>
<td>16 600</td>
<td>83 300</td>
<td>166 600</td>
<td>333 300</td>
</tr>
<tr>
<td>4</td>
<td>12 500</td>
<td>62 500</td>
<td>125 000</td>
<td>250 000</td>
</tr>
<tr>
<td>5</td>
<td>10 000</td>
<td>50 000</td>
<td>100 000</td>
<td>200 000</td>
</tr>
<tr>
<td>6</td>
<td>8300</td>
<td>41 600</td>
<td>83 300</td>
<td>166 600</td>
</tr>
<tr>
<td>10</td>
<td>5000</td>
<td>25 000</td>
<td>50 000</td>
<td>100 000</td>
</tr>
<tr>
<td>12</td>
<td>4160</td>
<td>20 830</td>
<td>41 600</td>
<td>83 300</td>
</tr>
<tr>
<td>20</td>
<td>2500</td>
<td>12 500</td>
<td>25 000</td>
<td>50 000</td>
</tr>
<tr>
<td>30</td>
<td>1600</td>
<td>8300</td>
<td>16 600</td>
<td>33 300</td>
</tr>
<tr>
<td>50</td>
<td>1000</td>
<td>5000</td>
<td>10 000</td>
<td>20 000</td>
</tr>
<tr>
<td>60</td>
<td>830</td>
<td>4160</td>
<td>8300</td>
<td>16 600</td>
</tr>
<tr>
<td>100</td>
<td>500</td>
<td>2500</td>
<td>5000</td>
<td>10 000</td>
</tr>
<tr>
<td>200</td>
<td>250</td>
<td>1250</td>
<td>2500</td>
<td>5000</td>
</tr>
<tr>
<td>Résolution</td>
<td>10 mPa\cdot s</td>
<td>100 mPa\cdot s</td>
<td>100 mPa\cdot s</td>
<td>100 mPa\cdot s</td>
</tr>
</tbody>
</table>

a. Les spindles de type TR spindles sont disponibles en option avec l’adaptateur pour petits échantillons; Zie "Pieces detachees et accessoiries" pagina 28.

b. La valeur minimale recommandée doit atteindre 15% de l’échelle.

c. Taux de cisaillement TR8 : 0.93 x tr/min avec un volume d’échantillon de 8.0 cm³
d. Taux de cisaillement TR9 : 0.34 x tr/min avec un volume d’échantillon de10.5 cm³
e. Taux de cisaillement TR10 : 0.28 x tr/min avec un volume d’échantillon de11.5 cm³
f. Taux de cisaillement TR11 shear rate: 0.25 x tr/min avec un volume d’échantillon de13.0 cm³

Le taux de cisaillement (S.R.) a été calculé sur la base de produits newtoniens.
### 6.3 LCP Spindle

**Table 5: Spindle type LCP**

<table>
<thead>
<tr>
<th>Vitesse spindle (tr/min.)</th>
<th>Viscosité maximale mesurable (mPa(\cdot)s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RV1-L / RV2-L</td>
</tr>
<tr>
<td>0.3</td>
<td>2000</td>
</tr>
<tr>
<td>0.5</td>
<td>1200</td>
</tr>
<tr>
<td>0.6</td>
<td>1000</td>
</tr>
<tr>
<td>1</td>
<td>600</td>
</tr>
<tr>
<td>1.5</td>
<td>400</td>
</tr>
<tr>
<td>2</td>
<td>300</td>
</tr>
<tr>
<td>2.5</td>
<td>240</td>
</tr>
<tr>
<td>3</td>
<td>200</td>
</tr>
<tr>
<td>4</td>
<td>150</td>
</tr>
<tr>
<td>5</td>
<td>120</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>60</td>
</tr>
<tr>
<td>12</td>
<td>50</td>
</tr>
<tr>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>50</td>
<td>12</td>
</tr>
<tr>
<td>60</td>
<td>10</td>
</tr>
<tr>
<td>100</td>
<td>6</td>
</tr>
<tr>
<td>200</td>
<td>3</td>
</tr>
</tbody>
</table>

Résolution 0.01 mPa\(\cdot\)s 0.16 mPa\(\cdot\)s

---

a. Le spindle LCP est fourni avec le kit pour l’adaptateur faible viscosité; Zie “Pieces detachees et accessoires” pagina 28.

b. La valeur minimale recommandée doit atteindre 15% de l’échelle.

Volume du récipient de l’échantillon= 18 ml (0.61 oz)

Taux de cisaillement (S.R.) = 1.224 x tr/min.
6.4 Spindles P

**Table 6: spindles P pour viscosimètres RV1-L et RV2-L**

<table>
<thead>
<tr>
<th>Vitesse spindle (tr/min.)</th>
<th>Viscosité maximale(^b) mesurable (mPa•s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PA</td>
</tr>
<tr>
<td>0.3</td>
<td>62 400</td>
</tr>
<tr>
<td>0.5</td>
<td>37 440</td>
</tr>
<tr>
<td>0.6</td>
<td>31 200</td>
</tr>
<tr>
<td>1</td>
<td>18 720</td>
</tr>
<tr>
<td>1.5</td>
<td>12 480</td>
</tr>
<tr>
<td>2</td>
<td>9 360</td>
</tr>
<tr>
<td>2.5</td>
<td>7 498</td>
</tr>
<tr>
<td>3</td>
<td>6 240</td>
</tr>
<tr>
<td>4</td>
<td>4 680</td>
</tr>
<tr>
<td>5</td>
<td>3 744</td>
</tr>
<tr>
<td>6</td>
<td>3 120</td>
</tr>
<tr>
<td>10</td>
<td>1 872</td>
</tr>
<tr>
<td>12</td>
<td>1 560</td>
</tr>
</tbody>
</table>

**Résolution:**
- 1 mPa•s
- 1 mPa•s
- 2 mPa•s
- 4 mPa•s
- 8 mPa•s
- 16 mPa•s

\(^a\) Les spindles de type P sont en option, et sont utilisés avec l’adaptateur hélicoïdal. Zie “Pieces detachees et accessories” pagina 28...

\(^b\) La valeur minimale recommandée doit atteindre 15% de l’échelle.

**Table 7: Spindle P pour viscosomètres RV1-R et RV2-R**

<table>
<thead>
<tr>
<th>Vitesse spindle (tr/min.)</th>
<th>Viscosité maximale(^b) mesurable (mPa•s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PA</td>
</tr>
<tr>
<td>0.3</td>
<td>666 600</td>
</tr>
<tr>
<td>0.5</td>
<td>400 000</td>
</tr>
<tr>
<td>0.6</td>
<td>333 300</td>
</tr>
<tr>
<td>1</td>
<td>200 000</td>
</tr>
<tr>
<td>1.5</td>
<td>133 300</td>
</tr>
<tr>
<td>2</td>
<td>100 000</td>
</tr>
<tr>
<td>2.5</td>
<td>80 000</td>
</tr>
<tr>
<td>3</td>
<td>66 600</td>
</tr>
<tr>
<td>4</td>
<td>50 000</td>
</tr>
<tr>
<td>5</td>
<td>40 000</td>
</tr>
<tr>
<td>6</td>
<td>33 300</td>
</tr>
<tr>
<td>10</td>
<td>20 000</td>
</tr>
<tr>
<td>12</td>
<td>16 600</td>
</tr>
</tbody>
</table>

**Résolution:**
- 5 mPa•s
- 10 mPa•s
- 25 mPa•s
- 50 mPa•s
- 125 mPa•s
- 250 mPa•s

\(^a\) Les spindles de type P sont en option, et sont utilisés avec l’adaptateur hélicoïdal. Zie “Pieces detachees et accessories” pagina 28...

\(^b\) La valeur minimale recommandée doit atteindre 15% de l’échelle.
7 CALIBRAGE

Votre viscosimètre est calibré en usine avant livraison. Un certificat de calibrage est inclus dans la valise de transport. Des calibrages supplémentaires sont prévus, à intervalles réguliers, tout au long de la vie du viscosimètre, ceci pour se soumettre aux exigences qualité, en particulier la norme ISO 9000, et à d’autres normes similaires.

Les calibrages peuvent être réalisés par l’utilisateur du viscosimètre (voir les instructions ci-dessous). Cependant, si des réglages sont nécessaires, il est préférable de contacter Elcometer ou votre distributeur local Elcometer.

Vérification du calibrage du viscosimètre

La procédure suivante de vérification du calibrage s’effectue avec l’adaptateur basse viscosité - Zie “Pieces détaillées et accessoires” pagina 28..

L'utilisation de cet adaptateur permet d'éliminer les fluctuations de température de l'échantillon et les variations dues à des différences dans le récipient qui contient l'échantillon.

Il est recommandé d'utiliser une huile de viscosité calibrée pour vérifier le calibrage. Le mieux est de prendre des huiles entre 100 mPa•s et 125 mPa•s pour la version R et de 5 mPa•s pour la version L.

1. Monter l’adaptateur basse viscosité et le remplir avec le volume nécessaire d’huile de calibrage - Zie “Adaptateur pour échantillons de faible viscosité” pagina 16..

2. Allumer le viscosimètre; commencer par effectuer des mesures de viscosité en se plaçant à la plus grande vitesse permise par la combinaison de la vitesse et du spindle (en considérant la viscosité nominale et les températures de l’huile de calibrage).

3. Une fois que la bonne valeur de l’échantillon est atteinte, vérifier la valeur de la viscosité affichée. Si cette valeur est identique à la viscosité nominale de l’huile de calibrage, c’est que le viscosimètre est bien calibré.

8 MAINTENANCE

Les viscosimètres rotatifs Elcometer sont conçus pour durer des années, s’ils sont utilisés et rangés dans des conditions normales.

Les viscosimètres rotatifs Elcometer ne contiennent aucune pièce interne devant être changée par l’utilisateur. Au cas, improbable, où une panne arriverait, veuillez renvoyer l’appareil chez votre distributeur local Elcometer ou directement chez Elcometer.

Toutes les coordonnées des bureaux Elcometer dans le monde sont données sur la dernière page de couverture de ce manuel d'instructions. Vous pouvez également vous rendre sur le site internet d’Elcometer : www.elcometer.com
9 DEPANNAGE

L’appareil ne fonctionne pas
Vérifier :
• qu’il est bien branché,
• que le bouton on/off situé à l’arrière du viscosimètre est correctement appuyé.

Le spindle ne tourne pas rond
Vérifier :
• que le spindle est correctement monté sur l’arbre,
• que la liaison spindle/arbre est propre.

L’appareil ne peut pas lire le zéro dans le vide
Vérifier :
• que l’appareil est bien de niveau.

La mesure de la viscosité n’est ni stable, ni précise.
Vérifier :
• que l’appareil est bien de niveau,
• que le choix de vitesse, en fonction du spindle, est correct,
• que la température de l’échantillon est stable

La tête du viscosimètre glisse et descend dans la colonne.
• resserrer les vis en nylon sur la plaque de fixation, avec la clé fournie.
10 CARACTERISTIQUES TECHNIQUES

Température de la pièce: 10°C à 40°C (50°F à 104°F)
Humidité relative : < 80%
Vitesses : 0.3, 0.5, 0.6, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 10, 12, 20, 30, 50, 60, 100, 200 tr/min.
Précision vitesse : > 0,5% de la valeur absolue
Plages de mesure, Version L: 3 mPa•s à 2 000 000 mPa•s - 76 plages, 19 vitesses et 4 spindles. (pour fluides de test de viscosité moyenne)
Version R: 20 mPa•s à 13 000 000 mPa•s - 114 plages, 19 vitesses et 6 spindles. (pour fluides de viscosité moyenne à haute)
Précision de mesure: ± 1% pleine échelle
Répétabilité : ± 0,2%
Altitude maximale : 2 000 m (6500 ft) au-dessus du niveau de la mer
Surtension : Class II (domestique/conditions industrielles moyennes)
Contamination: Niveau 2
Thermomètre : Plage : -15°C à +180°C (5°F à 356°F)
Résolution : 0,1°C (0,1°F)
Précision : ± 0,1°C (0,18°F)
Tension de travail : UK, 240 V AC 50 Hz
EUR, 220 V AC 50 Hz
US, 110 V AC 60 Hz
Puissance : 23 W
Dimensions (valise de transport): 495 mm x 420 mm x 200 mm
(19,5" x 16,5" x 8")
Masse (valise incluse): 9 kg (20 lb)
11 PIECES DETACHEES ET ACCESSOIRIES

Vous pouvez vous procurer, pour votre Viscosimètre Rotatif Elcometer, les pièces détachées et accessoires suivant soit auprès de votre distributeur local Elcometer, soit directement chez Elcometer.

11.1 Spindles standards
Jeu de spindles standard type L (L1 à L4) KT00230019698
Jeu de spindles standard type R (R2 to R7) KT00230019699
Spindle, R1 KT00230019700

11.2 Adaptateur faible viscosité- avec chambre double paroi
Adaptateur pour fluide faible viscosité, avec chambre double paroi KT00230019710
Adaptateur pour fluide faible viscosité, avec chambre double paroi, avec capteur de température intégré KT00230020174
(chauffage indirect par eau jusqu’à 100°C)

11.3 Adaptateur faible viscosité- sans chambre double paroi
Adaptateur pour fluide faible viscosité, sans chambre double paroi KT00230019711
(pour échantillons jusqu’à 200°C)

11.4 Adaptateur faible volume
Adaptateur faible volume KT00230019702
Adaptateur faible volume + avec capteur de température intégré KT00230019784

(Cet adaptateur nécessite un spindle pour échantillons faible volume - voir ci-dessous).

Spindle pour petit volume, (TL5, TL6 et TL7) KT00230019703
Spindle pour petit volume, (TR8, TR9, TR10 et TR11) KT00230019704
11.5 Adaptateur hélicoïdal

Adaptateur hélicoïdal, 240 V (UK) KT00230019705
220 V (EU) KT00230019706
110 V (USA) KT00230019707

(Cet adaptateur est fourni avec 6 spindles spéciaux de type T : PA, PB, PC, PD, PE, PF).

12 PRODUITS ASSOCIES

En plus du Viscosimètre Rotatif Elcometer, Elcometer propose une gamme très large d’appareils pour la mesure des caractéristiques des couches.

Les utilisateurs de l’Elcometer 2300 peuvent également bénéficier des produits Elcometer suivants:
• Broyeur de laboratoire Muller Elcometer 2000
• Jauges Elcometer de mesure de la finesse du broyage
• Coupes de viscosité Elcometer
• Applicateurs de film Elcometer Film

Pour plus d’informations, veuillez contacter Elcometer, ou votre distributeur local, ou vous rendre sur notre site : www.elcometer.com.